

International Journal of Theoretical & Applied Sciences, Special Issue-NCRTAST 8(1): 85-88(2016)

ISSN No. (Print): 0975-1718 ISSN No. (Online): 2249-3247

N-Strongly Projective Injective and Flat Moudles over Upper Traingular Matrix Artian Algebras

Sneha Joshi*, Shubhanka Tiwari** and Dr. M.R. Aloney***

*Associate Professor, Department of Mathematics, Malla Reddy College of Engg for Women, Hyderabad *Assistant Professor, Department of Mathematics, Nachiketa College, Jabalpur, (Madhya Pradesh), INDIA ***Department of Mathematics, TIT Bhopal, (Madhya Pradesh), INDIA

> (Corresponding author: Shubhanka Tiwari) (Received 11 April, 2016 Accepted 20 May, 2016) (Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: In this article we determine all the n- Strongly Complete Projective Injective and Flat resolutions and all the n-Strongly Gorenstein Projective, Injective and Flat Modules over upper Triangular Matrix artin algebras.

Key words: Gorenstein Projective, Injective and Flat Modules, Strongly Gorenstein Projective, Injective and Flat Modules, n- Strongly Gorenstein Projective, Injective and Flat Modules, Upper Triangular Matrix artin algebras.

I. INTRODUCTION

Throughout this article R is a commutative ring with unit element, and all R modules are unital. If M is any R-Module, we use $pd_R(M)$, $id_R(M)$ and $fd_R(M)$ to denote the usual projective, injective and flat dimensions of M, resp. Auslander and Bridger introduced the G dimension for finitely generated modules over Noetherian rings in 1967-69 denoted by G-dim(M) where G-dim(M) $\leq pd(M)$, G-dim(M) $\leq id(M)$ and G-dim(M) $\leq fd(M)$. If G-dim(M)=pd(M)=id(M)=fd(M) then it is finite.

The Gorenstein projective, injective and flat dimension of a module is defined in terms of resolutions by Gorenstein projective, injective and flat modules respectively.

Definition:

1. An R-mod M is said to b G-projective (Short of Gorenstein projective) if there exists an exact sequence of projective modules

 $P = \dots \rightarrow P_1 \rightarrow P_0 \rightarrow P^0 \rightarrow P^1 \rightarrow \dots$ such that $M \cong Im(P_0 \rightarrow P^0)$ and such that $Hom_R(-,Q)$ leaes the sequence P exact whenever Q is a projective module. The exact sequence P is called a complete projective resolution.

2.An R-mod M is said to b G-injective (Short of Gorenstein injective) if there exists an exact sequence of projective modules

..... $\rightarrow I_1 \rightarrow I_0 \rightarrow I^0 \rightarrow I^1 \rightarrow \cdots = I$ such that $M \cong Im(I_0 \rightarrow I^0)$ and such that $Hom_R(Q, -)$ leaves the sequence I exact whenever Q is a injective module. The exact sequence I is called a complete projective resolution. 3.An R-mod M is said to b G-flat (Short of Gorenstein flat) if there exists an exact sequence of projective modules

 $F = \dots \to F_1 \to F_0 \to F^0 \to F^1 \to \dots$ such that $M \cong Im(F_0 \to F^0)$ and such that $- \bigotimes I$ leaves the sequence F exact whenever I is a injective module. The exact sequence F is called a complete Flat resolution.

II. STRONGLY GORENSTEIN PROJECTIVE, INJECTIVE AND FLAT MODULES

In this section we introduce and study the strongly Gorenstein projective injective and flat modules which are defined as follows:

Definition: A complete projective resolution of the form

 $P = \dots \stackrel{f}{\longrightarrow} P \stackrel{f}{\rightarrow} P \stackrel{f}{\rightarrow} P \stackrel{f}{\rightarrow} \dots$ is called strongly complete projective resolution and denoted by (P, f).

An R-mod M is called strongly Gorenstein projective if $M \cong Kerf$ for some strongly complete projective resolution (P, f).

A complete injective resolution of the form

 $\dots \xrightarrow{f} I \xrightarrow{f} I \xrightarrow{f} I \xrightarrow{f} I \xrightarrow{f} \dots = I$ is called strongly complete injective resolution and denoted by (I, f).

An R-mod M is called strongly Gorenstein injective if $M \cong Kerf$ for some strongly complete injective resolution (I, f).

A complete flat resolution of the form

 $F = \cdots \stackrel{f}{\longrightarrow} F \stackrel{f}{\to} F \stackrel{f}{\to} F \stackrel{f}{\to} \cdots$. Is called strongly complete flat resolution and denoted by (F, f).

An R-mod M is called strongly Gorenstein injective if $M \cong Kerf$ for some strongly complete flat resolution (F, f).

III. n- STRONGLY GORENSTEIN PROJECTIVE, INJECTIVE AND FLAT MODULES

Let n be a positive integer. A module M ∈ R-mod is called n-strongly Gorenstein projective if there exist an exact

sequence $0 \to M \xrightarrow{f_n} P_{n-1} \xrightarrow{f_{n-1}} \dots \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0$ in Mod R with P_i projective for $0 \le i \le n - 1$ such that Hom_R(-, P) leaves the sequence exact whenever $P \in M$ od R is projective.

Let n be a positive integer. A module $M \in R$ -mod is called n-strongly Gorenstein injective if there exist an exact sequence

 $0 \to M \xrightarrow{f_0} I_0 \xrightarrow{f_1} \dots \xrightarrow{f_{n-1}} I_{n-1} \xrightarrow{f_n} M \to 0$ in Mod R with I_i injective for $0 \le i \le n-1$ such that $\operatorname{Hom}_{\mathbb{R}}(I, -)$ leaves the sequence exact whenever $I \in \operatorname{Mod} \mathbb{R}$ is injective.

Let n be a positive integer. A module $M \in R$ -mod is called n-strongly Gorenstein flat if there exist an exact

sequence $0 \to M \xrightarrow{f_n} F_{n-1} \xrightarrow{f_{n-1}} \dots \xrightarrow{f_1} F_0 \xrightarrow{f_0} M \to 0$ in Mod R with F_i flat for $0 \le i \le n-1$ such that Hom_R(- $\bigotimes F$) leaves the sequence exact whenever $P \in M$ of R is flat.

On the basis of above following facts holds

1.A module is Gorenstein projective (resp. Injective) if and only if it is a direct summand of a n-strongly Gorenstein projective (resp. Injective) module.

2.For finite finitistic projective dimension every n-strongly Gorenstein projective module is n-strongly Gorenstein flat module.

Proposition 1: Every projective (resp. Injective) module is n- strongly Gorenstein projective (resp. Injective)

Proof: Since every projective module is strongly Gorenstein projective then it is n-strongly Gorenstein projective (resp. Injective).

$$0 \to M \xrightarrow{f_n} P_{n-1} \bigoplus P_{n-1} \xrightarrow{f_{n-1}} \dots \xrightarrow{f_1} P_0 \bigoplus P_0 \xrightarrow{f_0} M \to 0$$

Where M \cong Kerf

Consider a projective module Q applying the functor Hom R(-, Q) to the above module M for P we get the following commutative diagram:

$$\dots \to Hom(M \oplus M, Q) \xrightarrow{Hom_R(f,Q)} Hom(M \oplus M, Q) \to \dots$$

$$\dots \to Hom(M,Q) \oplus HOM(M,Q) \to Hom(M,Q) \oplus Hom(M,Q) \to \dots$$

The n-strongly Gorenstein projective (resp. Injective) modules are not necessarily projective (resp. Injective). **Theorem 1:** A module is Gorenstein projective (resp. Injective) if and only if it is a direct summand of a n-strongly Gorenstein projective (resp. Injective) module.

Proof: Let M be a Gorenstein projective. Then there exist a complete projective resolution

 $0 \to M \xrightarrow{f_n^P} P_{n-1} \xrightarrow{f_{n-1}^P} \dots \xrightarrow{f_1^P} P_0 \xrightarrow{f_0^P} M \to 0$ Such that $M \cong Kerf_0^P$ Consider the exact sequence

$$0 \to \bigoplus M \xrightarrow{f_n^P} \bigoplus P_{n-1} \xrightarrow{f_{n-1}^P} \bigoplus P_0 \xrightarrow{f_0^P} M \to 0$$

Since $\operatorname{Ker}(\bigoplus f_i) \cong \bigoplus \operatorname{Ker} f_i$, M is a direct summand of $\operatorname{Ker}(\bigoplus f_i)$

Moreover Hom $(\bigoplus_{i \in I} P_i, M) \cong \prod_{i \in I} (\bigoplus P_i, M)$

Which is an exact sequence for any projective (resp. Injective) module M. Thus M is a n-Strongly Gorenstein projective Module over direct summand.

IV. n- Strongly Projective, Injective and Flat Module over Upper Triangular Matrix

In this section determine the strongly complete projective (resp. Injective) resolutions and hence all the n-Strongly projective modules over an upper triangular matrix $\tau = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$ be an artin algebra of matrix.

Let X :=
$$\begin{pmatrix} P \oplus (M \otimes_B Q) \\ Q \end{pmatrix}$$
, f: = $\begin{pmatrix} \alpha & 0 \\ \beta & id_M \otimes g \\ g \end{pmatrix}$: X \to X with P a projective A- module and Q a projective B-

module.

Lemma: If M is an A B bimodule such that ${}_{A}M$ and M_{B} are projective modules and Hom_A(M,A) is a projective B-module or injective A-module then X is n-SG-projective (resp. injective) left B-module, then $M \bigotimes_{B} X$ is a n-SG projective A-module.

Proof: Since X is n-SG projective left module there is a complete B-projective resolution

 $0 \to M \xrightarrow{f_n} P_{n-1} \xrightarrow{f_{n-1}} \dots \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0 \text{ such that } M \cong Kerf_0 \text{ since } M_B \text{ is a projective module.}$ $0 \to M \bigotimes_B P_{n-1} \xrightarrow{id_M \otimes f_{n-1}} \dots \dots \dots M \bigotimes_B P_0 \xrightarrow{id_M \otimes f_0} M \bigotimes_B P_1 \to 0$

Is exact, we know that it is a complete projective resolution.

Theorem 2:

1. if n/m then m- SG projective (R) \cap n- SG projective (R) = n - SG projective (R)

2. if $n \nmid m$ and m = np+k where p is a positive integer and 0 < k < n then

m- SG projective (R) \cap n- SG projective (R) \subseteq j-SG projective (R)

Proof: 1 it is trival since n/m

3. by above m- SG projective (R) \cap n- SG projective (R) \subseteq m- SG projective (R) \cap np- SG projective (R). M \subseteq m-

SG projective (R) \cap np - SG projective (R)

Then there exist an exact sequence

$$0 \to M \xrightarrow{f_m} P_{m-1} \xrightarrow{f_{m-1}} \dots \dots P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0....(1)$$

In Mod R with P_i projective for any $0 \le i \le m - 1$ put Li=Ker (Pi-1 \rightarrow Pi-2) for any $2 \le i \le m$ because M \in pn-SG projective (R). It is easy to see that M and L_{kn} are projectively equivalent, that is there exist projective modules P and Q in Mod R, such that

$M \oplus P \cong Q \oplus L_{kn}$

Proposition 2: For any $n \ge 1$ n-SG projective (R) is closed under direct sums.

Proof: Let {Mj}j∈J be a family of n-SG projective modules in Mod R then for any j∈J there exist an exact sequence

$$0 \to \bigoplus_{j \in J} Mj \xrightarrow{f_n} \bigoplus_{j \in J} P_{n-1}^j \xrightarrow{f_{n-1}} \dots \dots \bigoplus_{j \in J} P_1^j \xrightarrow{f_1} \bigoplus_{j \in J} P_0^j \xrightarrow{f_0} Mj \to 0 \quad \text{in} \quad \text{Mod} \quad \mathbb{R}$$

because $\bigoplus_{j \in J} P_{n-1}^j \dots \bigoplus_{j \in J} P_0^j$ are projective and the obtained exact sequence is still exact after applying the functor HomR(-, P) when P \in Mod R is projective $\bigoplus_{j \in J} Mj$ is n-SG projective.

Proposition 3: For any module M, the following are equivalent:

1. M is n-Strongly Gorenstien Projective

2. There exist a short sequence $0 \to M \xrightarrow{f_n} P_{m-1} \xrightarrow{f_{n-1}} \dots \dots P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0$ where P is a projective module and

 $Ext_1^n(M,Q) = 0$ for any projective module Q

3. There exist a short exact sequence $0 \to M \xrightarrow{f_n} P_{m-1} \xrightarrow{f_{n-1}} \dots \dots P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0$ where P is a projective module such that for any projective module Q the short sequence

$$0 \to Hom(M,Q) \xrightarrow{f_n} Hom(P_{n-1},Q) \xrightarrow{f_{n-1}} \dots \dots Hom(P_1,Q) \xrightarrow{f_1} Hom(P_0,Q) \xrightarrow{f_0} Hom(M,Q) \to 0 \quad \text{is exact.}$$

Theorem 3: If a module is M is n-Strongly Gorenstein flat then it is a direct summand of a n-Strongly Gorenstein flat modules.

Proof: A module is Gorenstein projective (resp. Injective) if and only if it is a direct summand of a n-strongly Gorenstein projective (resp. Injective) module.

Proof: Let M be a Gorenstein projective. Then there exist a complete projective resolution

$$0 \to M \xrightarrow{f_n^P} P_{n-1} \xrightarrow{f_{n-1}^P} \dots \xrightarrow{f_1^P} P_0 \xrightarrow{f_{0}^P} M \to 0$$

Such that $M \cong Ker f_0^F$ Consider the exact sequence

$$0 \to \bigoplus M \xrightarrow{f_n^P} \bigoplus P_{n-1} \xrightarrow{f_{n-1}^P} \bigoplus P_0 \xrightarrow{f_0^P} M \to 0$$

Since $\operatorname{Ker}(\bigoplus f_i) \cong \bigoplus \operatorname{Ker} f_i$, M is a direct summand of $\operatorname{Ker}(\bigoplus f_i)$

Moreover Hom $(\bigoplus_{i \in I} P_i, M) \cong \prod_{i \in I} (\bigoplus P_i, M)$

Which is an exact sequence for any projective (resp. Injective) module M. Thus M is a n-Strongly Gorenstein projective Module over direct summand.

REFERENCES

[1]. J. Asadollahhi, S. Salarian, Gorenstein objects in triangulate categories, J Algebra 281(2004).

[2]. M. Auslander, I. Reiten, S.O. Smal, Representation Theory of ArtinAlgeebra Cambridge Studies in Adv. Math. 36, Cambridge university press 1995.

[3]. Zhao and Zhaoyong Huang Communication in Algebra (2011).

[4]. O. Veliche, Gorenstein projective dimension for complexes Math. Z. 251(2005).

[5]. Anderson F.W "Endomorphism rings of projective modules" Math. Z. 111 (1969), 322-332.

[6]. Anderson F.W and Fuller K.R. "Rings and categories of modules" Springer-verlag 1973.